Preparation of an incurred rice sample and evaluation of pesticide residues in the commodities obtained after processing.

Lucía Pareja, Marcos Colazzo, Andrés Perez, Verónica Cesio, Bernardo Böcking, Horacio Heinzen, Amadeo R. Fernández-Alba.

8-11th May. LAPRW 2011, Montevideo, Uruguay.

Overview

- Introduction.
 - Objectives.

- Preparation of incurred rice.
- Evaluation of the pesticide residues by LC-MS/MS and GC/MS.
 - Comparison of the efficiency of the different methods.
 - Conclusions and Future work.

Introduction

 \checkmark Cereal crops comprise more than 60% of agricultural production worldwide.

 \checkmark Among cereals, rice is the most consumed and its consumption has increased in the recent decades, with a

consequent rise in the use of pesticides to improve the production yields.

Pareja et al., Trends in Analytical Chemistry, 201, 30, 270-291.

Rice ecosystem in Uruguay

✓ The cultivation of rice in Uruguay is an unique production system based on the rotation of prairies and alternative crops, integrated with livestock production, in order to ensure a global sustainability and health safety.

 \checkmark This system reduces the environmental impact of rice crop.

Rice pesticides in Uruguay

Inse<u>cti</u>cides

Diflubenzuron

Lambda cyalothrin

Thiamethoxam Cypermethrin

Fungicides Azoxystrobin **Tebuconazole**

Epoxiconazole Difenoconazole

Kresoxim methyl Trifloxystrobin **Pyraclostrobin** Tricyclazole

Herbicides

Byspiribac sodium Quinclorac Propanil Clomazone Glifosate **Pyrazosulfuron** ethyl

Rice is not consumed as raw material...

Which matrices do we have ?

Rice processing.

Cleaning step and drying

Paddy rice

Rice bran

✓It is important to study the distribution of the pesticide residues in the different commodities after rice processing.

To evaluate the pesticide distribution properly: incurred residues study

Objective

Preparation of rice samples with known incurred residues and their evaluation in the commodities obtained after processing.

How to reach this objective?

1. Preparing the incurred sample.

2. Studying the distribution of the pesticide residues in the different matrices after processing.

Selecting a suitable analytical methodology for the different matrices.

In the field

Preparation of the rice sample.

Which pesticides were applied???

Bispyribac sodium Quinclorac Propanil

Clomazone

Tebuconazole es Fungicid Epoxiconazole Trifloxystrobin Difenoconazole Azoxystrobin Kresoxim methyl Isoprothiolane Tricyclazole Carbendazim

Lambda-Cyhalothrin Thiamethoxam

Field treatment: Herbicides

Active substance	Commercial product	Application time	Application rate	
Propanil	Propanil 480	1 application January	15 L/ha	
Bispyribac sodium	Byspiriné	1 application January	0.5 L/ha	
Clomazone	Cibelcol	1 application January	4 L/ha	
Quinclorac	Exocet	1 application January	6 L/ha	

Field treatment: Fungicides

Active substance	Commercial product	Application time	Application rate	Elapsing time (days)
Epoxiconazole	Allegro	2 applications March	2.4 L/ha	35
Difenoconazole	Convect	2 applications March	0.5 L/ha	28
Azoxystrobin	Amistar	2 applications March	0.5 L/ha	21
Tebuconazole	Bucanner	2 applications March	1.2 L/ha	35
Carbendazim	Agrizim	2 applications March	2.0 L/ha	14-35
Isoprothiolane	Ipetec	2 applications March	2.5 L/ha	14
Kresoxim methyl	Allegro	2 applications March	2.4 L/ha	35
Trifloxystrobin	Nativo	1 application March	1.6 L/ha	21
Tricyclazole	Tricyclazole 75%	2 applications March	0.36 L/ha	-

Field treatment: Insectides

Active substance	Commercial product	Application time	Application rate
Lambda cyhalothrin	Engeo 247	1 application March	0.36 L/ha
Thiamethoxam	Engeo 247	1 application March	0.36 L/ha

All the application rates were higher than the recommended.

	Pesticide	Status under Directive 91/414/EEC MRL (mg/kg) Reg. (EC) No 396/2005	Status under Directive 91/414/EEC
na mana anta anno sao den den de can	Quinclorac	5	out
	Propanil	0.2	out
	Bispyribac sodium		pending
	Clomazone	0.01	included
	Lambda cyhalothrin	1	included
	Thiamethoxam	0.05	included
	Epoxiconazole	0.1	included
	Difenoconazole	0.05	included
	Azoxystrobin	5	In Uruguay is
	Tebuconazole	2	banned for rice!
	Carbendazim	0.01	included
	Isoprothiolane		out
	Kresoxim methyl	0.05	included
	Trifloxystrobin	0.02	included
	Tricyclazole	1	out

In the laboratory

Evaluation of the distribution of the pesticide residues in the different matrices after processing.

Which methodology is the best for each commodity??

In a previous work we compared different based QuEChERS methods for the analysis of white rice.

Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS*

Lucía Pareja^{a,b}, Verónica Cesio^b, Horacio Heinzen^b, Amadeo R. Fernández-Alba^{a,*}

^a Pesticide Residue Research Group, Department of Hydrogeology and Analytical Chemistry, University of Almeria, 04120 La Cañada de San Urbano, Almeria, Spain ^b Cátedra de Farmacognosia y Productos Naturales, Facultad de Química, UdelaR, General Flores 2124, Montevideo, Uruguay

Recovery Results: 10 µg/kg

Table.Methods: 1. Original QuEChERS; 2. Citrate buffered QuEChERS3. Citratebuffered QuEChERS without clean-up; 4. Acetate buffered QuEChERS withoutclean-up. N.A: not analyzed.

Pesticide name	Method 1 Method 2		Method 3	Method 4	
Azoxystrobin	112.6(6)	108.7(14)	102.3(13)	94.5(4)	
Bispyribac sodium	51.1(37)	81.6(22)	62.2(14)	84.1(27)	
Carbendazim	97.5(7)	114.1(8)	81.9(8)	87.6(4)	
Clomazone	104.3(5)	110.7(11)	104.7(11)	92.6(7)	
Epoxiconazole	101.3(9)	102.1(18)	67.3(10)	74.3 (12)	
Kresoxim methyl	NA	NA	NA	NA	
Propanil	100.7(9)	88.5(9)	77.4(6)	86.3(5)	
Tebuconazole	117.7(6)	102.1(8)	59.8(6)	91.0(14)	
Thiamethoxam	101.6(11)	118.4(16)	101.7(24)	96.5(11)	
Tricyclazole	101.3(3)	111.3(3)	112.1(8)	101.2(3)	

Recovery Results: 300 µg/kg

Table. Methods: <u>1</u>. Original QuEChERS; <u>2</u>. Citrate buffered QuEChERS; <u>3</u>. Citrate buffered QuEChERS without clean-up; <u>4</u>. Acetate buffered QuEChERS without clean-up. N.A: not analyzed.

Pesticide name	Method 1 Method 2		Method 3	Method 4	
Azoxystrobin	99.6(2) 90.6(4)		93.3(7)	89.5(1)	
Bispyribac sodium	99.8(6)	80.5(20)	87.6(6)	68.1(3)	
Carbendazim	99.1(3)	85.3(4)	85.6(10)	80.8(1)	
Clomazone	102.7(7)	86.6(6)	77.8(14)	78.1(6)	
Epoxiconazole	101.4(2)	85.9(5)	65.9(11)	71.1(8)	
Kresoxim methyl	105.7(5)	82.5(8)	71.2(6)	75.2(4)	
Propanil	101.1(1)	94.9(5)	82.2(1.3)	84.3(2)	
Tebuconazole	101.3(5)	79.3(4)	66.7(18)	69.2(9)	
Thiamethoxam	98.5(3)	87.8(4)	90.6(11)	90.1(3)	
Tricyclazole	101.6(2)	88.2(3)	89.4(10)	82.9(2)	

But....

What about quinclorac, isoprothiolane, trifloxystrobin, λ -cyhalothrin and difenoconazole which were not included in the previous work??

What about the performance of these methods in the other matrices???

We evaluated original QuEChERS and citrate QuEChERS for the different products.

Results - Validation.

LC-MS/MS

Azoxystrobin **Byspiribac sodium** Carbendazim Clomazone Difenoconazole Epoxiconazole Isoprothiolane Kresoxim methyl Propanil Quinclorac Tebuconazole Thiamethoxam Tricyclazole Trifloxystrobin

ESI +/-; 45/15 min

Column: Agilent Zorbax, Eclipse XDB – C8; 4,6 X 150 mm; 5µm particle size.

Mobile phase: MeCN/ 0.1% formic acid in Water.

Results - Validation.

Accuracy (% Rec)

Reproducibility (% RSD)

Detection and Quantification limits.

(LOD and LOQ)

Linearity

Matrix Effect

Recoveries White Rice

Recoveries Paddy Rice

 $5 \mu g/kg$

LOD & LOQ

Original QuEChERS

Linearity

Correlation coefficients were higher than 0.999 in all cases in the range 5-1500 μ g/kg except for quinclorac and kresoxim methyl.

Citrate QuEChERS Original QuEChERS

Signal suppresion Signal enhancement

Original QuEChERS

GC/MS

Difenoconazole Kresoxim methyl Trifloxystrobin λ cyhalothrin

GC-MS HP 6890-5793 Column: HP-5: 5% Phenyl 95 % Polydimethylsiloxane. Run Time:41 min. El mode.

Recoveries White and Paddy Rice

LOD & LOQ

Original QuEChERS

Paddy Rice

Linearity

Correlation coefficients were higher than 0.999 in the range 10-1500 μ g/kg.

Pesticide Distribution

Pesticide	Method	Paddy Rice µg/kg	Brown Rice µg/kg	Rice Bran µg/kg	Half grain Rice µg/kg	White Rice µg/kg	pKow	MRL
Azoxystrobin	Original QuEChERS	210.3	8.9	16.8			2.5	٧
Carbendazim	Original QuEChERS	718.9	80.8	110.3	10.4	11.7	1.4	X
Difenoconazole	Citrate QuEChERS	138.6	21.7	19.3			4.4	٧
Epoxiconazole	Original QuEChERS	431.4	44.2	10.1	24.0	32.2	3.3	٧
Isoprothiolane	Citrate QuEChERS	806.7	655.6	131.4	128.5	153.1	3.3	٧
Tebuconazole	Citrate QuEChERS	774.2	178.2	5.9	25.4	29.4	3.7	٧
Thiamethoxam	Citrate QuEChERS	31.9		20.3			-0.1	V
Tricyclazole	Citrate QuEChERS	638.6	34.2	262.3	9.0	8.5	1.4	٧

Conclusions and Future work

✓ A distribution of the applied pesticides on the different rice products was demonstrated.

✓ Different factors could explain this distribution: type of application, mode of action, weather conditions, matrix composition, etc.

 $\checkmark None of the herbicides studied were found in the$

different commodities.

Conclusions and Future work

✓ Paddy rice presented the highest concentrations.
✓ In general the concentration decreased with rice processing.

✓ No direct relationship was found between the concentration of residues found and their lipophilicity (Kow).

This work should be continued, trying to find the best extraction conditions in our laboratory to analyse λ -cyhalothrin.

✓ AECID

✓ANII

✓ PEDECIBA

✓ MACHEREY-NAGEL

✓MGAP ✓ UNIVERSIDAD DE ALMERÍA ✓ UNIVERSIDAD DE LA REPÚBLICA

Thank you for your attention !!

Hope you enjoy Montevideo!!!

