

Risiken erkennen – Gesundheit schützen

## **Basics of electrospray ionization**

Lutz Alder

#### Outline

The ionization of the liquid (in positive ESI)

- Formation of droplets with excess of positive charges ions
- Parameters influencing the total ion current

#### The mechanism of Coulomb explosion

- Properties of the charged "primary" droplets (e.g. size, excess charge)
- Mass and charge balance of formation of secondary and ternary droplets

Consequences of the limited charge in the ESI droplets

- The theoretical model without consideration of matrix
- Influence of buffer on sensitivity and linearity
- The theoretical model with consideration of matrix
- Relationship between of matrix concentration and suppression by matrix
- Matrix effects and linearity

#### Summary



ESI source with capillary and orifice without high voltage: Number of anions and cations in the liquid are identical!

#### Capillary















What influences the total ion current??



## Parameters influencing the total ion current





Parameter influencing the total ion current in a ESI source (number of excess charges per time interval)

$$\mathbf{I}_{\mathsf{ESI}} = \mathbf{A}_{\mathsf{Solv}} \times \mathbf{E}^{\varepsilon} \times \mathbf{V}_{\mathsf{f}}^{v} \times \sigma^{n}$$

- A<sub>Solv</sub>: solvent dependent term
- E: field strength in the source (V/m)
- $V_f$ : flow rate (µl/min)
- $\sigma$ : conductivity of the elevent
- $\epsilon$ , v, n: exponents (all  $\leq$  0,5)

The number of excess charges in the droplets is rising with

- the ESI voltage
- the flow rate
- With the concentration of buffer in the eluent (conductivity!)

R.J. Pfeiffer und C.D. Hendricks; AIAA J 6 (1968) 496 (Journal of American Institute of Aeronautics and Astronautics)



The total ion current does not depend on the concentration of the analyte!



### Parameter influencing the total ion current (TIC) in a ESI source



L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay

Page 9

## Why the TIC is not influenced by analyte concentration?



J. Phys. Chem. 102 (1998) 9154

First summary of important aspects of electrospray ionization

 The electrospray ion source permanently produces a fixed number of ions (about 3×10<sup>-6</sup> mol/l) independent from analyte concentration. These "excess charges" are located on the surface of the droplet.



## Outline

The ionization of the liquid (in positive ESI)

- Formation of droplets with excess of positive charges ions
- Parameters influencing the total ion current

#### The mechanism of Coulomb explosion

- Properties of the charged "primary" droplets (e.g. size, excess charge)
- Mass and charge balance of formation of secondary and ternary droplets

Consequences of the limited charge in the ESI droplets

- The theoretical model without consideration of matrix
- Influence of buffer on sensitivity and linearity
- The theoretical model with consideration of matrix
- Relationship between of matrix concentration and suppression by matrix
- Matrix effects and linearity

Summary



#### Geometry of a charged primary droplet



Volume of a ball =  $4/3 \pi \times r^3$ 

volume if diameter is  $1 \ \mu m$ :  $5,2 \times 10^{-19} \ m^3$  volume if diameter is  $10 \ \mu m$ :  $5,2 \times 10^{-16} \ m^3$ 

Surface of a ball = 4  $\pi \times r^2$ 

surface if diameter is  $1 \ \mu m$ :  $3,1 \times 10^{-12} \ m^2$ surface if diameter is  $10 \ \mu m$ :  $3,1 \times 10^{-10} \ m^2$ 

1000 droplets with 1  $\mu$ m diameter have the same volume as one droplet with 10  $\mu$ m. But the surface area of these 1000 droplets is 10 times higher.

Small droplet are able to carry a higher percentage of charge!

#### Calculation of the number of elementary charges in the droplet

#### Calculation is possible with the help of the ESI current

ESI current  $I_{ESI}$ : 1×10<sup>-6</sup> A (1 µA)

Flow rate  $V_f$ : 200 µl/min = 3.3 µl/s

Amout of charge per  $\mu$ I = I<sub>ESI</sub> / V<sub>f</sub> = 3×10<sup>-7</sup> As/ $\mu$ I

Elementary electric charge *e*:  $1,6 \times 10^{-19}$  As Elementary charges (*e*) per  $\mu$ I = (I<sub>FSI</sub> / V<sub>f</sub>) / *e* 

= 1.800.000.000.000 charges (e) per μl

### Elementary charges in a droplet of 3 µm (3×10<sup>-6</sup> m) diameter volume of droplet $V_{Tr}$ : 1,41×10<sup>-17</sup>m<sup>3</sup> = 1,41×10<sup>-8</sup> µl ( $V_{Tr}$ = 4/3 $\pi$ × r<sup>3</sup>) ( $I_{ESI} / V_f$ ) / e) x $V_{Tr}$ = 25.000 charges/droplet

#### "Concentration" of elementary (excess) charges

 $1.800.000.000.000 \ e/\mu I = 1.8 \times 10^{12} \ e/\mu L = 1.8 \times 10^{18} \ e/L$ 

 $1.8 \times 10^{18} e \times L^{-1} / 6.02 \times 10^{23} \times mol^{-1} = 3 \times 10^{-6} mol excess charges per L (3 µmol/L)$ 

ca. 4000 \

#### Number of molecules in a primary droplet





Number of solvent molecules in case of

| water:        | 470.000.000.000 |
|---------------|-----------------|
| methanol:     | 210.000.000.000 |
| acetonitrile: | 160.000.000.000 |

Number of soluted analyte molecules (assumed molecular weight: 500 g/mol)

| at 10 ng/ml (= 0.02 µmol/L): | 284     |
|------------------------------|---------|
| at 100 ng/ml (= 0.2 µmol/L): | 2.840   |
| at 1 µg/ml (= 2 µmol/L):     | 28.400  |
| at 10 µg/ml (= 20 µmol/L):   | 284.000 |

At > 1  $\mu$ g/ml the concentration of analyte molecules is higher than the concentration of excess charges (= 3  $\mu$ mol/L) in the primary droplet!! Saturation may occur!

#### Evaporation of a charged primary droplet



Initially the surface tension is much stronger than the repulsion of the excess charges on the surface.

# As soon as the diameter is reduced to 50% the **repulsion of ions on the surface exceeds the surface tension**.

After diameter reduction 15 % of solvent are remaining, only! Due to this solvent evaparation the concentration of analytes (and buffer or matrix) rises **by a factor of 7** (=100% / 15%)!

This evaporation requires less than 0.4 ms (400  $\mu$ s).



## Parameter influencing the stability of charged liquid droplets

Rayleigh-Limit:

$$q^2 = 64\pi^2 \varepsilon \sigma r^3$$

- q = maximum of charge in a stable droplet (As)
- $\varepsilon$  = Permittivity (dielectric constant) of the vacuum (8,86 x 10<sup>-12</sup> As<sup>2</sup> N<sup>-1</sup> m<sup>-2</sup>)
- $\sigma$  = surface tension of the liquid (e.g. methanol: 0,023 N m<sup>-1</sup>)
- r = radius of droplet ( in m)

John William Strutt 3rd Lord Rayleigh \* 12.11.1842 † 30.06.1919 Nobel price in physics in 1904

J.W. Strutt: On the Equilibrium of Liquid Conducting. Masses Charged with Electricity. Phil. Mag. 5, 14 (1882) pp. 184-186).



# Process of Coulomb explosion – The first photograph taken 1994







"Flash shadowgraph" of a primary droplet forming secondary droplets.

Reference:

A. Gomez and K. Tang: Phys. Fluids 6 (1994) 404





#### Properties of a charged secondary droplet



Number of solvent molecules in case of

| water:        | 71.000.000 |         |
|---------------|------------|---------|
| methanol:     | 32.000.000 | 0.015 % |
| acetonitrile: | 25.000.000 |         |

Calculated number of soluted analyte molecules

| at 10 µg/ml (= 20 µmol/L):  | 280 |        |
|-----------------------------|-----|--------|
| at 1 µg/ml (= 2 µmol/L):    | 28  | 0.10 % |
| at 100 ng/ml (= 0.2 µmol/l  | 3   |        |
| at 10 ng/ml (= 0.02 µmol/L) | 0.3 |        |

Only if analytes are able to occupy more surface than the buffer, they will occur in higher concentrations in the secondary droplets!

If the secondary droplet "explodes" we get ...



## The ternary droplet: ready for ion evaporation



typical diameter: 10 nm

Calculated number of solvent molecules in case of water: 18.000 methanol: 8.000 acetonitrile: 6.000

Rayleigh-Limit: ≤ 50 elementary charges

Ratio between charges (protonated analytes) and solvent (water) molecules: 18 / 18.000 = 1 / 1.000

Ratio between protons and water molecules in one liter of  $10^{-1}$  mol/L HCl (= pH 1): 0.1 mol / 50 mol = 1 / 500

During solvent evaporation and preferred transfers of ions from the surface during Coulomb explosion droplets become extremely acidic!



## The ternary droplet: ready for ion evaporation



Calculated number of solvent molecules in case of water: 18.000 methanol: 8.000 acetonitrile: 6.000

Rayleigh-Limit: < 50 elementary charges

100 water molecules are sufficient to fill the circumference

Diazinon

Saturation with analyte means, 25 to 50 quasimolecular ions of such size are spread over the surface.

# But which analytes may better occupy the surface and evaporate as ions?



## Effect of polarity of analytes on the efficiency of ionization

Relation between response and "nonpolar surface area" of six similar tripetides



#### Reference:

N.B. Cech and Ch. G. Enke; Anal. Chem. 72 (2000) 2717-2723

L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay



## Effect of polarity of analytes on the efficiency of ionization





## Second summary of important aspects of electrospray ionization

- The electrospray ion source permanently produces a fixed number of ions (about 3×10<sup>-6</sup> mol/l) independent from analyte concentration. These "excess charges" are located on the surface of the droplet.
- If a molecule (analyte) wants to appear in the mass spectrum it must successfully compete for a place on the charged surface of the droplets!



## Outline

The ionization of the liquid (in positive ESI)

- Formation of droplets with excess of positive charges ions
- Parameters influencing the total ion current

The mechanism of Coulomb explosion

- Properties of the charged "primary" droplets (e.g. size, excess charge)
- Mass and charge balance of formation of secondary and ternary droplets

#### Consequences of the limited charge in the ESI droplets

- The theoretical model without consideration of matrix
- Influence of buffer on sensitivity and linearity
- The theoretical model with consideration of matrix
- Relationship between of matrix concentration and suppression by matrix
- Matrix effects and linearity

Summary



#### The theoretical model (without co-eluting matrix)



Reference: Enke Ch. G., Anal. Chem. 69 (1997) 4885-4893

#### **Basic Assumption:**

Equilibration between the inner part of the droplet and the surface layer

 $[NH_4^+COOH^-] + [NH_4^+] =$ concentration of buffer (C<sub>B</sub>)



A = Analyte

[A+H]+ = quasimolecular ion of A

 $K_{A} = \frac{[A+H^{+}]}{[A] \times [H^{+}]}$ 

 $[A+H]^+ + [NH_4^+] =$ concentration of excess charges (Q)

#### The theoretical model (without co-eluting matrix)



Reference: Enke Ch. G., Anal. Chem. 69 (1997) 4885-4893

**Basic Assumption:** 

Equilibration between the inner part of the droplet and the surface layer

 $[NH_4^+COOH^-] + [NH_4^+] =$ concentration of buffer (C<sub>B</sub>)



A = Analyte

[A+H]+ = quasimolecular ion of A

 $K_{A} = \frac{[A+H^{+}]}{[A] \times [H^{+}]}$ 

 $[A+H]^+ + [NH_4^+] =$ concentration of excess charges (Q)



The theoretical model (without co-eluting matrix) Equation to calculate the analyte concentration [A+H]<sup>+</sup> on surface

## $a \times [A+H]^{+2} + b \times [A+H]^{+} + c = 0$

$$\begin{aligned} &a = K_A/K_E - 1 \\ &b = -(Q \times (K_A/K_E - 1) + C_A \times (K_A/K_E) + C_E) \\ &c = C_A \times Q \times (K_A/K_E) \end{aligned}$$

[A+H]<sup>+</sup>

concentration of the qauasimolecular ion of the analyte

 $[Q = [NH_4^+] + [A+H^+]$   $C_A = [A+H]^+ + [A]$   $C_B = [NH_4+COOH^-] + [NH_4^+]$   $K_A = [A+H^+] / [A] \times [H^+]$  $K_E = [NH_4^+] / [NH_4+COOH^-] \times [H^+]$ 

total number of excess charges
total concentration of the analyte; 0 ... 10<sup>-6</sup> mol/L
concentration of buffer (ammonium formiate); 10<sup>-4</sup> ... 10<sup>-2</sup> mol/L
equilibrium constant of analyte
equilibrium constant of electrolyte

Reference with incorrect equation: Enke Ch. G., Anal. Chem. 69 (1997) 4885-4893

L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay

#### Application of the theoretical model The influence of buffer concentration on sensitivity and linearity

Buffer concentration: 10<sup>-3</sup> mol/L



Buffer concentration: 10<sup>-4</sup> mol/L

Reduction of buffer concentration will enhance sensitivity, but simultaneously this reduction will lower linearity!



rescaled (×10)



Page 30

**F**r BfR



#### The theoretical model (with co-eluting matrix)



Reference with incorrect equation: Constantopolus et al., Anal. Chimica Acta 406 (2000) 37-52



BFR

#### The theoretical model (with co-eluting matrix)



Additional parameter and equations:

M = (uncharged) matrix

[M+H]<sup>+</sup> = quasimolecular ion of matrix

$$K_{M} = \frac{[M+H^{+}]}{[M] \times [H^{+}]}$$

 $[A+H]^+ + [NH_4^+] + [M+H]^+ =$ concentration of excess charges (Q)

The theory may explain in which extent the analyte concentration on the surface is a function of concentration and surface activity of matrix!

...but the calculation of [A+H]+ becomes more demanding ...

Reference with incorrect equation: Constantopolus et al., Anal. Chimica Acta 406 (2000) 37-52

The theoretical model (with co-eluting matrix) Equation to calculate the analyte concentration [A+H]<sup>+</sup> on surface

$$a \times [A+H]^{+3} + b \times [A+H]^{+2} + c \times [A+H]^{+} + d = 0$$

$$\begin{aligned} a &= K_{M} - K_{A} + K_{E} (1 - K_{M}/K_{A}) \\ b &= C_{A} (2K_{A} - K_{M} - K_{E}) + C_{B}(K_{M} - K_{E}(K_{M}/K_{A}) + C_{E}K_{E}(1 - K_{M}/K_{A}) + Q(K_{A} - K_{M} - K_{E} (1 - K_{M}/K_{A})) \\ c &= -C_{A} (Q(2K_{A} - K_{M} - K_{E}) + C_{B}K_{M} + C_{A}K_{A} + C_{E}K_{E}) \\ d &= C_{A}^{2} \times Q \times K_{A} \\ concentration of the qauasimolecular ion of the analyte \end{aligned}$$

 $\begin{array}{ll} Q = [NH_4^+] + [A+H^+] & \mbox{total number of excess charges} \\ C_A = [A+H]^+ + [A] & \mbox{total concentration of the analyte; 0 ... 10^{-6} mol/L} \\ C_B = [NH_4 + COOH^-] + [NH_4^+] & \mbox{concentration of buffer (ammonium formiate); 10^{-4} ... 10^{-2} mol/L} \\ C_M = [M+H]^+ + [M] & \mbox{total concentration of the matrix substance; 0 ... 10^{-4} mol/L} \\ K_A = [A+H^+] / [A] \times [H^+] & \mbox{equilibrium constant of analyte} \\ K_E = [NH_4^+] / [NH_4 + COOH^-] \times [H^+] & \mbox{equilibrium constant of matrix substance} \end{array}$ 

Reference with incorrect equation: Constantopolus et al., Anal. Chimica Acta 406 (2000) 37-52

#### The theoretical model (with co-eluting matrix) The influence of matrix' ability to occupy the surface on [A+H]+



L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay

Page 34

#### The theoretical model (with co-eluting matrix) The influence of analyte's ability to occupy the surface



 $100\% = 3.8 \times 10^{5}$ 

 $100\% = 1.5 \times 10^{5}$ 

 $100\% = 5,7 \times 10^4$ 

 $100\% = 6,0 \times 10^3$ 

 $100\% = 6.0 \times 10^2$ 

#### The theoretical model (with co-eluting matrix) The influence of analyte's ability to occupy the surface





 $100\% = 3.8 \times 10^{5}$ 

 $100\% = 1.5 \times 10^{5}$ 

 $100\% = 5,7 \times 10^4$ 

 $100\% = 6.0 \times 10^3$ 

 $100\% = 6.0 \times 10^2$ 

#### The prediction of the theoretical model for dilute and shoot The influence of matrix concentration on analyt's response



L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay



# What is the prediction of the theoretical model for the influence of matrix on linearity?

electrolyte:

 $K_E = 1$  $C_M = 1$  mmol/L

analyte:  $K_A = 1000$  $C_A = 0.3 \dots 1300 \text{ ng/ml}$ 

Do you remember slide 31?

This slide had shown a non-linear calibration line in the absence of matrix



#### The prediction of the theoretical model for the influence of matrix on linearity 0,8



L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay

# The prediction of the theoretical model for the influence of matrix on linearity



L. Alder, LAPRW 2011, May 8th to May 11th 2011, Montevideo/Uruguay

Page 40

#### Last summary of important aspects of electrospray ionization

- 1. If a molecule (analyte) wants to appear in the mass spectrum it must successfully compete for a place on the charged surface of the droplets!
- The electrospray ion source permanently produces a fixed number of ions (about 3 ×10<sup>-6</sup> mol/l) independent from analyte concentration. These "excess charges" are located on the surface of the droplet.
- 3. Based on theory matrix effects strongly depend on the ability of the matrix to occupy the surface of droplets.
- 4. Based on theory matrix effects do not seriously depend on the ability of the analyts to occupy the surface of droplets. Analytes behave very similar.
- 5. The linearity should become better if more buffer is used or if matrix co-elutes with analytes (or if several analytes coelute).





Risiken erkennen – Gesundheit schützen

## **Many thanks for listening!**

## Lutz Alder

Federal Institute for Risk Assessment Thielallee 88-92 • D-14195 Berlin Tel. +49 30 - 84 12 - 0 • Fax +49 30 - 84 12 - 47 41 bfr@bfr.bund.de • www.bfr.bund.de

## Relationship between eluent conductivity and droplet size

$$R \approx {}^{3}\sqrt{(V_{f} \times \varepsilon / \sigma)}$$

- R: radius of primary droplets
- V<sub>f</sub>: flow rate (µl/min)
- ε: permittivity
- $\sigma$ : conductivity of the eluent

Smaller droplets at higher conductivity!

Smaller droplets means smaller number of excess charges per droplet but higher number of charges per mL!



Diagramme from: Z Olumee, J.H. Callahan and A. Vertes; J. Phys. Chem. 102 (1998) 9154



### Process of Coulomb explosion – Development of Rayleigh Jets

Pictures of Coulomb explosion of a large droplet of ethylene glycol ( $r = 58\mu m$ , 20.000.000 elementary charges) taken with an high speed microscope in combination with an helium-neodym laser.



Reference:

D. Duft, T. Achtzehn, R. Müller, B.A. Huber and T. Leisner: Nature 42 (2003) 128



#### Process of Coulomb explosion – Development of Rayleigh Jets

Pictures of Coulomb explosion of a large droplet of ethylene glycol ( $r = 58\mu m$ , 20.000.000 elementary charges) taken with an high speed microscope in combination with an helium-neodym laser.



 $\Delta t = 140 \ \mu s$   $\Delta t = 150 \ \mu s$ 

Reference:

D. Duft, T. Achtzehn, R. Müller, B.A. Huber and T. Leisner: Nature 42 (2003) 128



#### Process of Coulomb explosion – Development of Rayleigh Jets

Pictures of Coulomb explosion of a large droplet of ethylene glycol ( $r = 58\mu m$ , 20.000.000 elementary charges) taken with an high speed microscope in combination with an helium-neodym laser.



Reference:

D. Duft, T. Achtzehn, R. Müller, B.A. Huber and T. Leisner: Nature 42 (2003) 128

