Fast Screening of Over 1000 Pesticides and Toxins Using Multiple Techniques at the US Food and Drug Administration

3rd Latin American Pesticide Residue Workshop May 8-11, 2011

Chris A. Sack, David Eide, Michael Smoker, Jon Wong, Kai Zhang, Greg Mercer, Lora Lin, Sara Edison

Introduction

- Overview
- Residue methods
- Future
- Pesticide Residue Analysis Pilot Course

Overview - Challenges

Food and feed matrices

Imports: > 11 million per year

Domestic: ???

Pesticides and other contaminants

- 1000s that are known
- Range: 10 ppb ???
- Analyses
 - Up to 50 samples per day per lab
 - Timeframe: 1 day for imports

Overview

6 PESTICIDE LABORATORIES

Analytical Strategy

Analytical Strategy

Targeted Quantitative Analysis

- LC-MS/MS and GC-MS/MS
- >350 Selected analytes
 - Historical findings
 - Anticipated findings
- Calibration Standard Mixtures
 - Designed by FDA
 - Prepared by commercial vendors
 - Available for purchase

Analytical Strategy

- **Qualitative Screening Analysis**
 - No standards required
 - Spectral Library Techniques
 - GC-MS (fullscan mode)
 - LC-MS/LIT (IDA-EPI)
 - Exact Mass Techniques (Exactive Orbitrap)
 - LC-HRMS
 - DART-HRMS

LC-MS/MS Determination

- Scope: >240 pesticides in 15 minutes
- Chromatography: reverse phase
- Columns: C₁₈
 - 100 x 2.1 mm, ~3 μm
 - 50 cm x 4.6 mm, 1.9 μm
- Mass Spectrometer parameters
 - Ionization: Positive electrospray
 - Detection: scheduled MRM (two transitions)
- Detection Limit: < 10 ppb for most compounds</p>

LC-MS/MS Determination

LC-MS/MS Determination

Residues in strawberry sample

Pesticide	PPB	Pesticide	PPB
Boscalid	128	Novaluron	9
Pyraclostrobin	54	Hexythiazox	5
Cyprodinil	47	Spiromesifen	2
Azoxystrobin	45	Propiconazole	1
Pyrimethanil	41	Acetamiprid	1
Chlorantranilaprole	23	Carbendazim	1
Fludioxinil	22	Methomyl	0.7
Fenhexamid	20	Thiophanate methyl	0.5
Bifenazate	9	Methoxyfenozide	0.3
Myclobutanil	9	Fenpyroximate	0.2

LC-MS/MS Determination

Trifloxystrobin @ 0.2 ppb in applesauce

GC-MS/MS Determination

- Scope: > 200 pesticides in 20 minutes
- GC
 - Retention time locking
 - Backflushing mid column
- MS/MS detection
 - MRM (2-3 transitions/compound)
 - Detection Limit: 1 10 ppb for most analytes

GC-MS/MS Determination

Residues in strawberry sample

Pesticide	PPB	Pesticide	PPB
THPI	237	Bifenthrin	7
Boscalid	128	Quinoxyfen	3
Pyraclostrobin	54	Spiromesifen	2
Cyprodinil	47	Propiconazole	1
Pyrimethanil	41	Fenpropathrin	0.7
Azoxystrobin	37	Biphenyl	0.3
Captan	27	Chlorpyrifos	0.1
Fludioxinil	22	Folpet	0.1
Fenhexamid	20	p,p'-DDE	0.1
Bifenazate	9	p,p'-DDT	0.04
Myclobutanil	9	o,p'-DDT	0.03
Malathion	8		

GC-MS/MS Determination

o,p'-DDT in strawberry

- Scope: > 900 compounds in 20 minutes
- Screen for library matches no standards
- Agilent GC-MSD pesticide library
- Identification:
 - Spectral matching of AMDIS deconvoluted spectra
 - Retention time

Celery fullscan TIC

Celery fullscan TIC

Celery deconvolution report

		AMDIS		NIST	
R.T.	Compound Name	Match	R.T. Diff	Reverse Match	Hit Num.
2.5859	Naphthalene-d8	99	-8.0	91	1
2.842	Carvone	75	-8.3	81	2
3.341	EPTC	94	-7.2	89	2
6.977	Anthracene	80	-5.4	88	5
7.9576	Diisobutyl phthalate	75	1.2	84	11
9.214	Di-n-butylphthalate	65	0.8	90	18
9.658	Parathion	82	2.5	76	2
11.925	Dieldrin	79	1.5	61	2
14.3189	Chrysene-d12	79	-12.1	91	1
14.8515	Bis(2-ethylhexyl)phthalate	96	3.3	85	7
15.7388	Permethrin I	60	6.5	63	2
15.833	Permethrin II	63	7.0	79	
16.518	Cypermethrin II	43	11.7	57	1

Residues discovered and transferred to the LC-MS/MS and GC-MS/MS targeted analyses:

- Fluopicolide
- Spiromesifen
- Spirodiclofen
- Flonicamide
- Chlorfenapyr
- Etoxazole

- Bifenazate
- Etoxazole
- Fenamidone
- Famoxadone
- Quinoxyfen
- Sudan I*

*Food color prohibited in US - not added to target analysis

LC-MS/LIT Mass Spectral Libraries

- One instrument and Two Approaches
 - MRM by LC-MS/MS
 - MS library matching using LC-MS-Linear Ion Trap Hybrid Mass Spectrometry
 - Targeted and library screening

Kai Zhang¹, Jon W. Wong¹, Paul Yang²
1. Food and Drug Administration, College Park, MD, U.S.A.
2. Ontario Ministry of the Environment, Ontario, Canada

LC-MS/LIT Mass Spectral Libraries

Targeted screening: information dependent acquisition-enhanced product ion (IDA-EPI) method

LC-MS/LIT Mass Spectral Libraries

Carbaryl confirmed in peach sample

LC-MS/LIT Mass Spectral Libraries

False Positive: Pyrimethanil?

- •RT match
- •Two Pyrimethanil MRMs
 - $200 \rightarrow 107$
 - 200 → 82
- Ion Ratios (200→107/200→82)
 Requirement: ± 20 %
 Sample/Standard: ~ 60 %

LC-MS/LIT Mass Spectral Libraries

LC-MS/LIT Mass Spectral Libraries

- Currently building MS libraries for targeted compounds
- Plan to increase screening capability by adding other non-targeted compounds

Exactive Orbitrap® High Resolution MS

- Resolution
 - ■100,000 @ 1 scan per second
 - 10,000 at 10 scans per second
- Mass accuracy: <1 ppm</p>
- •Scan speed: \rightarrow 10 per second
- ■Scan range: 50 4000 m/z

- Detection Limit: < 10 ng/ml (100 ppb) most compounds</p>
- Sample introduction
 - LC (shown here)
 - DART

What's New with the Pesticide Residue Program in the FDA?

Looking to the Future

Exactive Orbitrap® High Resolution MS

API Ion Source

LC-HRMS Pesticide Screening Analysis

- Screen > 500 pesticides
- Sample introduction by reverse phase uHPLC
 - Column: C18, 100 x 2.1 mm, 1.9 µm particles
- Identification
 - Retention time
 - HRMS Resolution of 100,000
- Limit of Detection : < 10 ng/ml (100 ppb)</p>
 - Plan to expand to other chemical contaminants: mycotoxins, plant toxins, veterinary drugs, dyes, emerging organic pollutants, etc...

What's New with the Pesticide Residue Program in the FDA?

Looking to the Future

LC-HRMS Pesticide Screening Analysis

uHPLC-single stage Orbitrap MS (full scan analysis)

What's New with the Pesticide Residue Program in the FDA?

Looking to the Future

LC-HRMS Pesticide Screening Analysis

Looking to the Future

Screening using DART-HRMS

- Sample introduction by Direct Analysis in Real Time (DART)
- HRMS: Resolution = 100,000
 - Scope: > 500 pesticides and toxins
- Analysis time: 7.5 minutes/sample

Looking to the Future

Screening using DART-HRMS

Method:

Surface of raw agricultural commodities are moistened with solvent and swabbed with foam

No sample preparation or extraction!

Swabs are directly analyzed using a DART ionization source combined with high resolution mass spectrometry

No chromatography!

Looking to the Future

Screening using DART-HRMS

Custom foam rail autosampler

Looking to the Future

DART Ionization

$$\begin{split} He(2^{3}S) + nH_{2}O &\rightarrow [(H_{2}O)_{n-1} + H]^{+} + OH^{-} He(1^{1}S) \\ [(H_{2}O)_{n} + H]^{+} + M &\rightarrow [M + H]^{+} + nH_{2}O \end{split}$$

Looking to the Future

Screening using DART-HRMS

Screening using DART-HRMS

Findings

- Up to 10 pesticides per sample
- Average 2-3 pesticides per sample
- Publications
 - Rapid Commun. Mass Spectrom. 2011, 25, 127–139 Sara. E. Edison¹, Lora A. Lin¹, Bryan M. Gamble¹, Jon Wong² and Kai Zhang²
 - ¹USFDA, Forensic Chemistry Center, Cincinnati, OH, USA
 - ²USFDA, Center for Food Safety and Applied Nutrition, College Park, MD, USA
 - Practical considerations for rapid screening for pesticides using ambient pressure desorption ionization with high-resolution mass spectrometry, Sara E. Edison^{1*}, Lora A. Lin¹, Lenin Parrales² (Submitted to Food Additives and Contaminants)
 - ¹Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH
 - ²Food and Drug Administration, San Francisco District Office, Alameda, CA

Pesticide Residue Analysis Pilot Course June 6-10, 2011

- Location: University of Maryland College Park, MD, USA
- By invitation only: Latin American countries
- Scope: Focus on fresh fruits and vegetables
- Hands-on laboratory training
- Instrumental Techniques: LC-MS/MS
- Certificate of Accomplishment of Pesticide Residue Analysis in Fresh Fruit and Produce

Pesticide Residue Analysis Pilot Course Agenda

	Morning -Lecture	Afternoon -Laboratory
Monday	Pesticide compliance in LA Sample preparation	Laboratory SOPs Sample preparation
Tuesday	Principles of GC and LC Detection: Element and Mass LC-MS	Group A: LC-MS training Group B: Calibration and other sample preparation
Wed	Quantitative analysis Identification and confirmation QC/QA	Group A: Calibration and other sample preparation Group B: LC-MS training
Thursday	Method Development Validation of single lab method Regulations	Sample analysis Results interpretation
Friday	Review and evaluation	

Pesticide Residue Analysis Pilot Course

Course Instructors

Dr. Alexander Krynitsky

Supervisory Chemist, Office of Regulatory Science, FDA

Dr. Jon Wong

Chemist, Office of Regulatory Science, FDA

Dr. Kai Zhang

Chemist, Office of Regulatory Science, FDA

Dr. Steven Robbs Chemist, Office of Center Director CFSAN, FDA

Mrs Doriliz De Leon

Consumer Safety Officer, Office of Compliance. FDA

Pesticide Residue Analysis Pilot Course

Registration

contact Dr. Janie Dubois at:

jifsantraining@umd.edu

Acknowledgements

- David Eide, Michael Smoker (USFDA-Kansas City)
- Jon Wong, Ronald Roy, Kai Zhang (USFDA-CFSAN)
- Greg Mercer, Barb Neuhaus (USFDA-Seattle)
- Luis Suguiyama, US Environmental Protection Agency
- US Department of Agriculture Foreign Agriculture Service