

Managing Pesticide Use to Protect Our Natural Environment

Ronald Parker, PhD Senior Environmental Engineer Office of Pesticide Programs US Environmental Protection Agency Washington DC

3rd Latin American Pesticide Residue Workshop: Food and Environment

Ecological Risk Assessment / Risk Management: Presentation Outline

- Ecological Risk Assessment (ERA): Why Do It? How Does It Work?
- Constraints to ERA Identified
- Possible Solutions Identified
 - Data Harmonization
 - Work-sharing
- Capacity-building; Capabilitytraining
- User-friendly Exposure/Risk Assessment Methods & Tools
- Overall Goal: Risk Management

Ecological Risk Assessment: Why Do It?

Informs Pesticide Registration **Decisions** Informs Pesticide **Risk Management** Decisions Protects Wildlife Conserves Global **Biodiversity** Promotes Tourism

Ecological Risk Assessment: How Does It Work?

Estimates the Likelihood of Adverse Ecological Effects by Comparing Estimated Field Exposure to Measured Laboratory Toxic Effects Data

Effects = Toxicity, hazard

May Be Combined With Human Health Risk Assessment & Pesticide Benefits Assessment for an Overall Pesticide Risk / Benefit Evaluation

Ecological Risk Assessment Decision Diagram

* This diagram does not include human health risk assessment.

Five-Steps of Ecological Risk Assessment

- Step 1: Data Collection
- Step 2: Problem Formulation
- Step 3: Risk Analysis
- Step 4: Risk Characterization
- Step 5: Risk Management
- *Based on USEPA *Guidelines for Ecological Risk* Assessment and EU Directive 91/414/EEC

Step #1: Pesticide Data Collection

Develop and
 Assemble Data
 Needed for the Risk
 Assessment

- Laboratory Physical / Chemical Data
- Laboratory Ecological-Effects (Toxicity) Data
- Laboratory and Field
 Environmental Fate and
 Exposure Data

Types of Ecotoxicological Data

- The Most Data is Available for: Birds, Small Mammals, Fishes, Insects, Crustaceans, Mollusks, Vascular Plants, Algae
- The Fewest Data are Available for: Reptiles, Amphibians, Sponges, Protozoans, Fungi, Worms, Coelenterates & Plant Groups

Number of Species Tested

- World Has Identified More than 1.3 Million Animal & Plant Species
- For New Chemicals, We Have Acute Toxicity Data for About 15 Species
- For Older Chemicals –
 We Have Data For
 About 50 Species
- For Herbicides, We Have Data for About 15 Plant Species

Use of Indicator (Surrogate) Species

- 2 3 Species of Bird Represent 9,000 Species of Birds and 6,500 Species of Reptiles
- 2 3 Species of Fish Represent 22,000 Species of Fish and 4,000 Species of Amphibians
- 3 4 Invertebrate Species Indicate Sensitivity of 1 Million Species of Invertebrates
- 15 Plant Species Indicate Sensitivity of the Plant Kingdom
- 1 -2 Insect Species Represent Over 800,000 Insects

Web-ICE (Interspecies Correlation Estimation) Toxicity Estimation Tool for Ecological Risk Assessment

Contact: Sandy Raimondo, Deborah Vivian, Jill Awkerman, and Mace Barron

USEPA/ORD/NHEERL/GED

How well do ICE models work? Model uncertainty related to taxonomic distance

Aquatics in same order ~ 90% within 5-fold, 95% within 10-fold

Common level	Number datapoints	5-fold	10-fold	50-fold	> 50 fold
genus (1)	372	92	3	4	1
family (2)	1042	92	6	2	0
order (3)	280	89	6	4	1
class (4)	5622	79	9	8	4
phylum (5)	854	52	17	21	10
kingdom (6)	4524	50	16	22	12

Percentage of all datapoints in cross-validation category

How well do ICE models work? Model uncertainty related to taxonomic distance

Wildlife in same order ~ 90% within 5-fold, 97% within 10-fold

Percentage of all datapoints in cross-validation category

Common level	Number datapoints	5-fold	10-fold	50-fold	> 50 fold
genus (1)	48	100	0	0	0
family (2)	1452	92	6	2	0
order (3)	2238	90	7	3	0.3
class (4)	5706	85	10	5	0.2
phylum (5)	2402	76	13	9	1.5

Raimondo et al. 2003 Environmental Science and Technology (ES&T)

Data For Chronic Risk Assessment

- 2 Species of Birds, 1-2 Species of Crustacea, and 1-2 Species of Fish Are Used to Represent Chronic or Sublethal Sensitivity of All Species in these Groups
- Limited Number of Chronic Endpoints Are Statistically Analyzed Under Controlled Laboratory Conditions

Acute-to-Chronic Estimation (with Time -Concentration - Effect Models)

Step #2: Problem Formulation: Every Pesticide is Different

Step #2: Problem Formulation

- Generates and Evaluates Hypotheses About Reasons that Ecological Effects of Human Activities May Occur
- Evaluates the Nature of the Problem, Refines Objectives for the Analysis and Provides the Foundation for the Assessment.
- Develops a Plan For Analyzing Data and Characterizing Risk
- Responds to the Needs of the Risk Manager

Step #3: Ecological Risk Analysis (1)

- Connects Problem Formulation
 Phase (Step 2) With the Risk
 Chacterization Phase (Step 4)
- Examines the Relationships Between the Two Primary Components of Risk, *Exposure* & *Effects*, and Between Them and Ecosystem Characteristics
- Provides the Ingredients
 Necessary for Estimating
 Ecological Responses to
 Pesticides Under Exposure
 Conditions of Interest

Step #3: Ecological Risk Analysis (2)

- Assessment Endpoints and Conceptual Models Developed During Problem Formulation Provide the Focus and Structure for the Analyses
- Develops Summary Profiles that Describe Exposure and the Relationship between the Pesticide (Stressor) and its Effects (Response)
- These Profiles Provide the Basis for Estimating and Characterizing Risk

Aquatic Ecological Risk Analysis

- Explicitly Assesses Fish and Invertebrates
- Implicitly Assesses Amphibians, Molluscs, etc
- Assesses Both Freshwater Organisms and Salt Water / Estuarine Organisms
- Always Assesses Direct Effects
- Sometimes Also Assesses
 Indirect Effects (e.g. Fish Food, Habitat, Predators, etc)
- Most Difficult Type of Exposure Assessment – Due to Inherent Variability of Aquatic Habitat

Terrestrial Ecological Risk Analysis

- Explicitly Assesses Birds and Mammals
- Implicitly Assesses Reptiles
- Always Assesses Direct Effects
- Sometimes Also
 Assesses Indirect Effects (e.g., Availability of Food, Habitat, Predators, etc)
- Much Easier than Aquatic Exposure Assessment

Step #4: Ecological Risk Characterization

- Risk Assessors Use Results of the Analysis Phase (*Exposure and Effects*) to Develop an Estimate of the Risks Faced by Animal and Plant Populations and Communities
- Allows Risk Assessors to Clarify the Relationships Between Pesticide Effects and Ecological Communities and to Reach Conclusions Regarding the Occurrence of Exposure and the Potential to See Adverse Effects
- Assessor Identifies and Summarizes the Uncertainties, Assumptions and Qualifiers in the Risk Assessment
- Reports the Conclusions to Risk Managers to Provide Clear Information for Environmental Decision Making

Step #5: Ecological Risk Management: Possible Mitigation Measures

- Mitigation Measures Tailored to Local Conditions (e.g., Weather Limitations, Soil Type Limitations With Regard to Runoff, Sensitive Site Limitations)
- Pesticide Use Restrictions (Reduction In Application Rate and Number of Applications, Increased Time Between Applications, Acreage Limitation, Limits on Application Method, Requirement For Incorporation Into Soil)
- Separation Buffer Zones to Reduce Spray Drift to Vulnerable Sites
- Physical Barriers Such as Trees Along Waterways to Intercept Spray Drift
- Using No-tillage or Reduced Tillage Agriculture to Reduce Runoff and Soil Erosion

Step #5: Ecological Risk Management: Possible Mitigation Measures

- Vegetated Buffer Zones to Reduce Offsite Runoff of Pesticide to Vulnerable Sites
- Use of Constructed Wetlands and Holding Ponds to Provide Time for the Pesticide to Degrade
- Application Restrictions (e.g., Method Type - Aerial Versus Ground, Field Tarps, Soil Compaction, Timing of Application)
- Equipment Cleaning and Maintenance Helps to Assure that the Target Application Rate Is the Rate that Is Actually Applied
- Restrictions on Locations at Which Equipment May Be Cleaned (Away From Waterways and Wells)
- Safe Disposal of Excess Product

Load Reduction for Field Buffers: Dissolved Pesticide

Load Reduction for Field Buffers: Adsorbed Pesticide

Making Ecological Risk Assessment Work: Addressing Major Constraints

Ecological Risk Assessment: Constraints Identified in Central American Workshop

Need For Better Coordination Among Ministries Within the Country and Between other Countries in the Region

- Short Legal Time-Frame for Collecting Data and Conducting Ecological Risk Assessment
- Inadequate Resources (Funding, Trained Staff, Laboratory Facilities)

Risk Assessment Constraints Identified by Latin American Regulators

- Limited Data on Local Non-Target Species Which May Need Protection
- Environment Fate and Toxicity Data that were Developed for Temperate Climates & Species
- Lack of Data For Exposure Assessment (Crops, Soil Properties, Water Resources, Weather History, etc)

Risk Assessment is Scientifically Complex

 ERA Requires Many Scientific Disciplines
 Agronomy, Botany, Entomology, Ecology, Bacteriology, Toxicology, Public Health, Chemistry,

Public Health, Chemistry, Hydrology, Environmental & Agricultural Engineering, Crop Production, Farm Management, Economics, Statistics, Geology, Zoology, etc.

 ERA Requires Strong Management & Coordination Skills

Development of Ecological Risk Assessment – Risk Management Training Module (eVALUATE)

- OECD Working Group on Pesticides (WGP): International Pesticide Assessment Consultation
 - Held in Washington, DC in October 1998
 - Hosted by the USEPA Office of Pesticide Programs and the National Chemicals Inspectorate of Sweden
 - OECD, Non-OECD, NGOs: UN
 Organizations, Pesticide Industry
- Requests by Latin American Countries to USEPA/OPP for Training in Risk Assessment Methods

Funding and Technical Support for eVALUATE

- Partially Provided by USEPA
 Field and External Affairs Division
- Partially Provided by IUPAC Division of Chemistry and the Environment
- Technical Support Provided by OPP EFED, Members of IUPAC Division of Chemistry and Environment & Industry Scientists
- Cooperation & Support from:
 - Joint International Atomic Energy Agency-Food and Agriculture Organization (IAEA-FAO) Pesticide Program
 - International Food Contaminant and Residue Information System (INFOCRIS) Pesticide "Distance Learning for Capacity-Building" (e-Learning) Website

Original OECD WGP Recommendations

- Provide Access to Examples of Completed Risk Assessments
- Encourage Harmonization, Work-sharing & Membership in Regional Groups
- Create a "Layman's Guide" to the OECD Monograph Guidance Documents
- Standardize Definitions for Risk Assessment Vocabulary and Processes
- Identify Useful Sites on the World Wide Web

OECD WGP Recommendations

- Assist in Technology Transfer of Risk Assessment Methods & Tools
 - Provide Access to Tools for
 Estimating Pesticide
 Exposure
 - Provide Access to Tools for
 Estimating Pesticide
 Toxicity
- Encourage Participation in International Groups and Treaties (IFCS, PIC, POPS, IPCS, Montreal Protocol)

OECD WGP Recommendations

- OECD Should: Consider Ways in Which Data Developed for Temperate Climates Could be Adapted to Meet the Needs of Developing Countries with Arid & Tropical Climates
- Pesticide Industry Should:
 - Consider Ways to Facilitate the Flow of Information from Agencies in Developed Countries to those in Developing Countries
 - Assist and Encourage National Regulatory Agencies in the Development and Adoption of a Common Data Submission Format

Benefits of Work-sharing and of Harmonized Methods and Testing

Work-sharing Among Countries

- Harmonization
 - Common Test Guidelines
 - Joint Data Development
 - Common Assessment Methods
- Joint Data Review
 - Reduces Costs
 - Increases Range of
 Expertise Available
 - Saves Time

Regional Harmonized Assessment Groups

- European Union (EU)
- North American Free Trade Agreement (NAFTA) Countries
- Organizational For Economic Cooperation And Development (OECD) Countries
- Andean Community Countries
- Central American Countries:
 Central American Free Trade Agreement (CAFTA)
 - Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA)
- West African Countries: Comité Sahelien Des Pesticides (CSP) – the Regional Registration Authority
- Southern African Development Community (SADC) Countries
- MERCOSUR Countries (possible)

Components of e-VALUATE Pesticide Risk Assessment & Training Module

- Step-by-Step Guidance
- Risk Assessment
 Process Diagram
- Risk Management
 Guidance
- Glossary of Terms & Process Descriptions
- Environmental Fate and Toxicity Databases
- Training Materials
- Exposure Models
- Internet Linkages

User-friendly, Harmonized Aquatic and Terrestrial Exposure Models

- EXPRESS (EXAMS PRZM Exposure Simulation Shell): User-friendly, Input/Output Shell to Estimate Pesticide Exposure to Aquatic Wildlife Using More Complex, Sophisticated Models
- T-REX (Terrestrial Residue Exposure) Model Is a More Complex, Spreadsheet-based Estimator of Terrestrial Ecological Risk Also Based on Potential Pesticide Residues on Avian and Mammalian Food Items Using the Fletcher-Kenaga (UTAB) Data Base, and
- RICE Models: Pesticide Environmental Fate and Transport, Water Quality Model that Estimates Pesticide Concentrations Within and Down-steam From Single or Multiple Rice Paddies.

EXPRESS (EXAMS - PRZM Exposure Simulation Shell)

- EXPRESS (<u>EXAMS PRZM</u> <u>Exposure Simulation Shell</u>) Is a User-friendly, Input/Output Shell to Estimate Pesticide Exposure to Aquatic Wildlife Using Much More Complex and Sophisticated Models
- Simulations Using the Pesticide Root Zone Model (PRZM) and Exposure Analysis Modeling System (EXAMS) Are Used For a "Refined" Estimation of Pesticide Concentrations In Surface Waters Used as Drinking Water Sources and for Aquatic Ecosystem Exposure Assessments.

T-REX (Terrestrial-Residue EXposure) Model for Avian / Mammalian Exposure Assessment

Note: Sources of wildlife diet are assumed to be available for less than one year for this model.

- T-REX (Terrestrial Residue Exposure) Model Is a Spreadsheetbased Estimator of Terrestrial Ecological Risk
- Not Site or Region (or Country) – specific
- Based on Potential Pesticide Residues on Avian - Mammalian Food Items Using the Fletcher-Kenaga Database

Additional Work on eVALUATE Still Needed

- Complete Translation into Spanish, Portuguese and other Languages
- Develop HTML Versions for the Internet
- Develop Crop-specific EXPRESS Scenarios
- Coordinate Module, Models, Manuals, and Materials with other Organizations
- Conduct National and Regional Training Workshops In Use of the Module